Sains Malaysiana 53(12)(2024): 3241-3251
http://doi.org/10.17576/jsm-2024-5312-09
Biosensor Elektrokimia untuk Pengesanan 17β-Estradiol menggunakan Mikrosfera Polimer Metakrilat-Akrilat Terfungsi
(Electrochemical Biosensor for 17β-estradiol Detection using Functional Methacrylate-Acrylate
Polymer Microspheres)
ALIFF
AIMAN MOHAMAD ROZLAN, SHARINA ABU HANIFAH*, NURFAIZAH ABU TAHRIM & ANWARUL
HIDAYAH ZULKIFLI
Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 30
April 2024/Accepted: 26 August 2024
Abstrak
17ß-estradiol
(E2) adalah sejenis bahan kimia pengganggu endokrin (EDC) yang sering dikaji kerana sebatian ini banyak dikumuhkan oleh manusia melalui proses perkumuhan dan dilepaskan kembali ke dalam sistem air tanpa dipantau oleh loji rawatan air. Tahap E2 yang tidak normal boleh menyebabkan masalah kesihatan seperti tulang lemah (osteoporosis) dan masalah kesuburan disebabkan oleh ketidakseimbangan hormon. Untuk memastikan pengesanan awal dan pengurusan yang betul bagi keadaan ini, biopengesanan berterusan terhadap tahap E2 adalah penting untuk mengekalkan keseimbangan hormon dan kesihatan keseluruhan. Pendekatan alternatif telah diambil dengan menggabungkan sensor elektrokimia dengan 76-mer aptamer yang mempunyai rantaian khusus E2 yang telah terbukti mempunyai keafinan tinggi kepada E2. Polimer metakrilat-akrilat dengan struktur mikrosfera telah digunakan untuk meningkatkan kepekatan aptamer
yang dipegun dan meningkatkan kepekaan sensor tanpa memerlukan amplifikasi oleh bahan konduktif. Penyelidikan ini telah membangunkan biosensor elektrokimia untuk mengesan 17ß-estradiol (E2) menggunakan polimer metakrilat-akrilat yang diubah suai. Polimer poli(glisidil metakrilat-ko-n-butil akrilat) terfungsi dengan nisbah isi padu 90:10 dalam bentuk mikrosfera bertindak sebagai matriks untuk pemegunan E2-aptamer secara kovalen. Berdasarkan analisis elektrokimia, biosensor 17ß-estradiol (E2) yang dibangunkan berasaskan aptamer ini telah berjaya menunjukkan julat kepekaan linear antara 0.1 nM - 1.0 µM (R2 = 0.9937) dan had pengesanan rendah sebanyak 7.384 pM. Kebolehasilan biosensor (n=8) diperoleh ialah antara 2.65% - 12.23%
dan adalah selektif terhadap molekul E2 berbanding dengan tindak balas terhadap sebatian EDC yang lain. Selain itu, biosensor yang dihasilkan telah berjaya mengesan kepekatan E2 yang ditambah ke dalam sampel air sungai dengan peratusan pemulihan yang tinggi di antara 92.5 dan 97.2%. Oleh itu,
biosensor yang dibangunkan ini berfungsi dengan baik dalam mengesan dan memantau kepekatan E2 dalam sampel air.
Kata kunci: Aptamer; biosensor; metakrilat-akrilat; polimer terfungsi; 17ß-estradiol
Abstract
17ß-estradiol
(E2) is an endocrine-disrupting chemical (EDC) that is often studied due to its
compound excretion largely by humans through the excretion process and released
back into the water system, without proper monitoring by water treatment
plants. Abnormal E2 levels can cause health problems such as weak bones
(osteoporosis) and fertility problems due to unstable hormone levels. To ensure
early detection and proper management of these conditions, continuous
biosensing of E2 levels is essential for maintaining stable hormone levels and
overall health. An alternative approach was taken by combining electrochemical
sensors with 76-mer aptamers of E2 specific sequence, which were shown to have
high affinity binding to E2. Methacrylate-acrylate polymer with a microsphere
structure was utilized to increase the concentration of the immobilized aptamer
and increasing the sensitivity of the sensor without the need for amplification
by conductive materials. This research developed an electrochemical biosensor
for detecting 17ß-estradiol (E2) using a methacrylate-acrylate-modified
polymer. Functionalized poly(glycidyl methacrylate-co-n-butyl
acrylate) with a volume ratio of 90:10 in the form of microspheres acts as a
matrix for covalent immobilization of E2-aptamer. Based on the electrochemical
analysis, the developed 17ß-estradiol (E2) biosensor based on aptamer
has successfully shown a linear sensitivity range between 0.1 nM - 1.0 µM (R2 = 0.9937) and a low detection limit of
7.384 pM. Biosensor reproducibility (n=8) was
obtained between 2.65% - 12.23% and was selective towards the E2 molecule
compared to the response of other EDC compounds. Additionally, the produced
biosensor had successfully detected the E2 spiked concentrations in the river
water sample with a high recovery percentage between 92.5 - and 97.2%.
Therefore, the developed biosensor performs well in detecting and monitoring
the concentration of E2 in water samples.
Keywords: Aptamer; biosensor;
functional polymer; methacrylate-acrylate; 17ß-estradiol
REFERENCES
Ali, M.H., Elsherbiny, M. & Emara, M. 2019. Updates on aptamer research. International
Journal of Molecular Sciences 20(10): 2511.
Baryamoglu, G., Kaya, B. & Yakup Arica, M. 2005. Immobilization of Candida Rugosa Lipase onto Spacer-Arm
Attached Poly(GMA-HEMA-EDGMA) Microsphere. Food
Chemistry 92(2):261-268.
Beitollahi, H., Zaimbashi,
R., Mahani, M.T. & Tajik, S. 2020. A label-free aptasensor for highly sensitive detection of homocysteine
based on gold nanoparticles. Bioelectrochemistry 134: 107497.
Belleperche, M. & DeRosa, M.C. 2018. pH-Control in
aptamer-based diagnostics, therapeutics, and analytical applications. Pharmaceutical 11(3): 80.
Eisold, A. & Labudde,
D. 2018. Detailed analysis of 17ß-estradiol-aptamer interactions: A molecular
dynamics simulation study. Molecules 23(7): 1690.
Elgrishi, N., Rountree, K.J., McCarthy, B.D.,
Rountree, E.S., Eisenhart, T.T. & Dempsey, J.L.
2018. A practical beginner’s guide to cyclic voltammetry. Journal of
Chemical Education 95: 197-206.
European Parliament. 2015. Commission
Implementing Decision (EU) 2015/495 establishing a watch list of substances for
Union-wide monitoring in the field of water policy pursuant to Directive
2008/105/EC of the European Parliament and of the Council. Journal of the
European Union L 78: 40-42.
European Parliament. 2013. Directive
2013/39/EU of the European Parliament and of the Council amending Directives
2000/60/EC and 2008/105/EC as regards priority substances in the field of water
policy. Journal of the European Union L 226: 1-17.
Futra, D., Heng, L.Y., Jaapar,
M.Z., Uliana, A., Saeedfar,
K. & Ling, T.L. 2016. A novel electrochemical sensor for 17β-estradiol from molecularly imprinted polymeric microspheres
and multi-walled carbon nanotubes grafted with gold nanoparticles. Analytical
Methods 8: 1381-1389.
Haron, D.E.M., Yoneda,
M., Hod, R., Wahab, M.I.A. & Aziz, M.Y. 2022.
Perfluoroalkyl and polyfluoroalkyl substances, bisphenol and paraben compounds
in dust collected from residential homes in Klang Valley, Malaysia. Human and Ecological Risk Assessment: An International
Journal 28: 827-843.
Huang, K., Liu, Y-J., Shi, G., Yang, X.
& Liu, Y-M. 2014. Label-free aptamer sensor for 17ß-estradiol based
on vanadium disulfide nanoflowers and Au
nanoparticles. Sensors and Actuators B 201: 579-585.
Inaba, H., Hara, S. & Horiuchi, M.
2020. Gonadal expression profiles of sex-specific genes during early sexual
differentiation in Japanese eel Anguilla japonica. Fisheries Science 87:
203-209.
Kasonga, T.K., Coetzee, M.A.B., Kamika, I., Ngole-Jeme, V.M.
& Momba, N.B. 2021. Endocrine-disruptive
chemicals as contaminants of emerging concern in wastewater and surface water:
A review. Journal of Environmental Management 277: 111485.
Ke, H., Liu, M., Zhuang, L., Li, Z., Fan, L.
& Zhao, G. 2014. A fetomolar level 17ß-estradiol
electrochemical aptasensor constructed on hierachical dendritic gold modified boron-doped diamond
electrode. Electrochimica Acta 137:
146-153.
Kim, Y.S., Jung, H.S., Matsura,
T., Lee, H.Y., Kawai, T. & Gu, M.B. 2007. Electrochemical detection of
17ß-estradiol using DNA aptamer immobilized gold electrode chip. Biosensors
and Bioelectronics 22(11): 2525-2531.
Lobstein, T. & Brownell, K.D. 2021. Endocrine-disrupting
chemicals and obesity risk: A review of recommendations for obesity prevention
policies. Obesity Reviews 22(11): e13332.
Mazlan, S.Z. & Hanifah,
S.A. 2014. Synthesis and effect of modification on methacrylate - acrylate
microspheres for Trametes versicolor laccase enzyme immobilization. AIP Conference Proceedings 1614: 263-268.
Nameghi, M.A., Danesh,
N.M., Ramezani, M., Alibolandi,
M., Abnous, K. & Taghdisi,
S. 2019. An ultrasensitive electrochemical sensor for 17β-estradiol using split aptamers. Analytica Chimica Acta 1065: 107-112.
Newman, M.S., Curran, A.D., Mayfield, B.P., Saltiel, D. & Stanczyk, F.Z. 2022. Assessment of estrogen exposure from transdermal estradiol gel therapy with a dried urine assay. Steroids 184: 109038.
Nishio, M., Tsukakoshi,
K. & Ikebukuro, K. 2021. G-quadruplex: Flexible conformational changes by
cations, pH, crowding and its applications to biosensing. Biosensors and
Bioelectronics 178: 113030.
Olowu, R.A., Arotiba,
O., Mailu, S.N., Baker, P. & Iwuoha,
E. 2010. Electrochemical aptasensor for endocrine
disrupting 17β-estradiol based on a
poly(3,4-ethylenedioxylthiopene)-gold nanocomposite platform. Sensors 10(11):
9872-9890.
Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.A. 2008. Introduction to Spectroscopy. Cengage Learning.
Qiao, L., Wang, H., He, J., Yang, S. &
Chen, A. 2021. Truncated affinity-improved aptamers for 17β-estradiol determination by AuNPs-based colorimetric aptasensor. Food Chemistry 340: 128181.
Rahman, M., Heng, L.Y., Futra,
D., Chiang, C.P.C., Rashid, Z.A. & Ling, T.T. 2017. A highly sensitive
electrochemical DNA biosensor from acrylic-gold nano-composite
for the determination of Arowana fish gender. Nanoscale Research Letters 12: 484.
Rather, J.A., Khudaish,
E.A. & Kannan, P. 2018. Graphene-amplified femtosensitive aptasensing of estradiol,
an endocrine disruptor. Analyst 143(8): 1835-1845.
Reano, R.L. & Escobar, E.C. 2024. A review
of antibody, aptamer, and nanomaterials synergistic systems for an amplified
electrochemical signal. Frontiers in Bioengineering and Biotechnology 12: 1361469.
Rozi, N., Hanifah,
S.A., Zaid, M.H.M., Karim, N.H.A. & Ikeda, M. 2021. Feasible study on poly(pyrrole‑co‑pyrrole‑3‑carboxylic
acid)‑modified electrode for detection of 17β‑estradiol. Chemical Papers 75(2): 3493-3503.
Saha, N.K., Salvia, W.S., Konkolewicz,
D. & Hartley, C.S. 2024. Transient covalent polymers through
carbodiimide-driven assembly. Angewandte Chemie 138(31): e202404933.
Song, J., Chen, S., Zhang, Q., Xi, X., Lei,
H., Du, G. & Pizzi, A. 2023. Preparation and
characterization of the bonding performance of a starch-based water resistance
adhesive by Schiff base reaction. International Journal of Biological
Macromolecules 251: 126254.
Shubhangi, Nandi, I., Rai, S.K. & Chandra, P.
2024. MOF-based nanocomposites as transduction matrices for optical and
electrochemical sensing. Talanta 266(Part 2):
125124.
Taib, M., Tan, L.L., Karim, N.H.A., Ta, G.C.,
Heng, L.Y. & Khalid, B. 2020. Reflectance aptasensor based on metal salphen label for rapid and facile
determination of insulin. Talanta 207: 120321.
Tofovic, P.S. & Jackson, E.K. 2020. Estradiol metabolism: Crossroads in pulmonary arterial
hypertension. International Journal of Molecular Sciences 21(1): 116.
Ulianas, A., Lee, Y.H., Hanifah,
S.A. & Tan, L.L. 2012. An electrochemical DNA microbiosensor based on succinimide-modified acrylic microspheres. Sensors 12:
5445-5460.
Wilkinson, J.L., Hooda,
P.S., Swinden, J., Barker, J. & Barton, S. 2017.
Spatial distribution of organic contaminants in three rivers of southern
England bound to suspended particulate material and dissolved in water. Science
Total Environmental 487-497.
Yakupova, Z.R., Lebedinets,
S.A., Vakh, K.S., Garmonov,
S.Y. & Bulatov, A.V. 2022. Microextraction of 17β-estradiol from medicinal preparations for the subsequent
determination by HPLC-UV. Journal of Analytical Chemistry 77: 342-346.
Yu, Z., Li, Q., He, X., Wang, X., Wen, Y.,
Zeng, L., Yu, W., Hu, P. & Chen, H. 2023. A multifunctional hydrogel based
on nature polysaccharide fabricated by Schiff base reaction. European
Polymer Journal 197: 112330.
Zaid, M.H.M., Abdullah, J., Rozi, M., Rozlan, A.A.M. & Hanifah, S.A. 2020. A sensitive impedimetric aptasensor based on carbon nanodots modified electrode for
detection of 17ß-estradiol. Nanomaterials 10(7): 1346.
Zhang, F. & Liu, J. 2020. Label-Free
Colorimetric Biosensors Based on Aptamers and Gold Nanoparticles: A Critical
Review. Analysis & Sensing 1(1):30-43.
Zhu, B., Alsager, O.A., Kumar, S., Hodgkiss, J.M. & Travas-Sejdic,
J. 2015. Label-free electrochemical aptasensor for
femtomolar detection of 17β-estradiol. Biosensors
and Bioelectronics 70: 398-403.
*Corresponding author; email: sharina@ukm.edu.my
|